If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-48x+200=0
a = 2; b = -48; c = +200;
Δ = b2-4ac
Δ = -482-4·2·200
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-8\sqrt{11}}{2*2}=\frac{48-8\sqrt{11}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+8\sqrt{11}}{2*2}=\frac{48+8\sqrt{11}}{4} $
| 9-5g=-61 | | 3+2x=13-3 | | 2-15x=6-17x | | 7=w/9+10 | | 8u-(-18)=42 | | 7v+6=4v+27 | | t/7+83=92 | | 8w=5520w= | | -7d=-9–8d | | x2+2x+440=0 | | 3s=5s–8 | | -10–c=10+c | | 6=g/2-4 | | -7h+9+6h=4–2h | | -12x-15=6x+3 | | 4b=4+3b | | b/6-3=1 | | p+10–3p=-7p–10 | | 3-2x=12-3x | | 3u+26=7u-6 | | 5z+4(3+z)=0 | | x^2+9-18=0 | | 2w+8=7w+28 | | 3-2x=13-3x | | 3x+10=25{5} | | 22.5=3x+3(22.5-3x) | | a-6.3=16 | | 3x+21=6-× | | 7x-3/9=6 | | 3(x+1-6=0 | | k8– -12= 17 | | 16=a-6.3 |